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Using theoretical simulations based on density functional theory within the

generalized gradient approximation, a series of metastable phase transitions

occurring in low-pressure Al2SiO5 polymorphs (andalusite and sillimanite) are

predicted; similar results were obtained using semiclassical interatomic

potentials within the ionic shell model. Soft lattice modes as well as related

structural changes are analysed. For sillimanite, an isosymmetric phase

transition at ca 35 GPa is predicted; an incommensurately modulated form of

sillimanite can also be obtained at low temperatures and high pressures. The

high-pressure isosymmetric phase contains ®ve-coordinate Si and Al atoms. The

origin of the ®vefold coordination is discussed in detail. Andalusite was found to

transform directly into an amorphous phase at ca 50 GPa. This study provides an

insight into the nature of metastable modi®cations of crystal structures and the

ways in which they are formed. Present results indicate the existence of a critical

bonding distance, above which interatomic interactions cannot be considered as

bonding. The critical distance for the SiÐO bond is 2.25 AÊ .

1. Introduction

Metastability phenomena play an important role in many

natural and technological processes. For instance, according to

the famous Ostwald's rule, crystallization often produces a

metastable phase, which slowly transforms into the stable

modi®cation via a sequence of metastable phases. At low

temperatures, because of kinetics, metastable phases can exist

inde®nitely long. Amorphous solids are just one example of

this metastability. Recent discoveries, e.g. of pressure-induced

amorphization by Mishima et al. (1984) and the `memory glass

effect' by Kruger & Jeanloz (1990),1 have boosted interest in

metastability phenomena. It is possible, for instance, that ice

comets consist, to a large extent, of amorphous ice phases,

formed at high pressure and low temperatures. Another

example is provided by isosymmetric phase transitions, which

can lead to both stable [e.g. KTiOPO4 (see Alan & Nelmes,

1996)] and metastable [e.g. SiO2 (Badro et al., 1997)] phases.

This type of phase transitions, until recently thought to be very

unusual, is now being found in an increasing number of

systems.

Theoretically, for any compound there can be an in®nite

number of metastable structures, corresponding to local

minima of the free-energy hypersurface.2 However, only a

small number of these possibilities can practically be synthe-

sized. Theoretical simulations can often shed light on the

nature of such phases (Tse & Klug, 1992) and can even be

used to predict their behaviour and optimal conditions for

their synthesis. Here we report state-of-the-art theoretical

simulations of metastable phases in the Al2SiO5 system. The

variety of metastable phases predicted here make Al2SiO5 an

ideal subject for studies of metastability phenomena.

Figure 1
Phase diagram of Al2SiO5. Theoretical results are from Oganov &
Brodholt (2000). Experimental results are from Olbricht et al. (1994) and
Schmidt et al. (1997). At high pressures, the mixture of oxides (corundum
Al2O3 and stishovite SiO2) is more stable than any of the Al2SiO5

polymorphs. As metastable phases, however, all these polymorphs can
exist at pressures well above their regions of thermodynamic stability.

1 It is becoming increasingly evident that the `memory glass effect' was an
experimental artifact.
2 Metastable phases do not transform to the stable phases at low temperatures
because it takes some energy to overcome the activation barrier and displace
the system from a local minimum. At high temperatures, such energy is
available and transitions to the stable phase become kinetically feasible.



The Al2SiO5 polymorphs (kyanite, andalusite and silli-

manite) are well known in mineralogy (Kerrick, 1990). For a

long time, their geologically important phase diagram was a

matter of debate, which now seems to have been resolved

(Olbricht et al., 1994). The main source of the problems in the

experimental determination of this phase diagram was the

small energy differences between the polymorphs and the

resulting kinetic problems. In our previous work (Oganov &

Brodholt, 2000), we reproduced the experimental phase

diagram rather closely (Fig. 1) using state-of-the-art quantum-

mechanical simulations; the electronic structure of these

minerals was recently studied (Iglesias et al., 2001) using a

similar method. At pressures above 11 GPa, Al2SiO5 phases

become thermodynamically unstable and decom-

pose into a mixture of oxides, Al2O3 plus SiO2.

However, as metastable phases, they can exist at

much higher pressures. Kyanite, the dense struc-

ture of which is based upon cubic closest packing

of oxygen atoms, can persist as a metastable phase

up to at least 80 GPa; the same is true for the

hypothetical dense pseudobrookite-like and

V3O5-like phases of Al2SiO5 (Oganov & Brod-

holt, 2000). Using ab initio simulations, we found

that the low-density phases, andalusite and silli-

manite, spontaneously undergo extremely inter-

esting phase transitions in the region 35±55 GPa.

These transitions are the subject of the present

study.

2. Computational methodology

We employed two distinct computer simulation

methods: (i) ®rst-principles pseudopotential

calculations and (ii) semi-classical calculations,

based on empirically derived interatomic poten-

tials. Quantum-mechanical calculations are very

accurate and reliable, but computationally

expensive. Their results comprise the main quan-

titative basis for our discussion of structural and

thermodynamic aspects of the phase transitions.

More approximate semi-classical calculations,

which are very cheap in terms of CPU time (about

103 times faster than the ®rst-principles calcula-

tions), can be used ef®ciently for dynamical as

well as for static calculations. This technique is

employed here for studying dynamical properties

at a qualitative level.

Calculations of both types require approximate

lattice parameters and atomic coordinates of each

phase as input; the compression behaviour of each

mineral is then studied separately. Theoretically, a

structure can be metastable under given condi-

tions if there are no net forces acting on the atoms

at rest and there are no soft modes. As our

calculations show, andalusite and sillimanite can

persist as metastable phases up to ca 35±55 GPa;

at these pressures, they cease to be in the local

free-energy minima (soft modes appear) and spontaneously

transform into other metastable phases.

2.1. First-principles calculations

First-principles calculations were performed using the

VASP code (Vienna Ab Initio Simulation Package; Kresse &

Furthmuller, 1996) running on the Cray T3E supercomputers

at Edinburgh Parallel Computer Centre and Manchester

Computer Centre. The computational method is based on

density functional theory (Hohenberg & Kohn, 1964; Kohn &

Sham, 1965) within the generalized gradient approximation

(GGA) (Wang & Perdew, 1991).
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Table 1
Comparison of theoretical calculations with experimental data for sillimanite.

The experimental crystal structure was taken from Winter & Ghose (1979), the equation of
state was taken from Yang et al. (1997), and the atomization energy was recalculated from the
enthalpy of formation data of Olbricht et al. (1994). [4] means that ®xed K0 = 4 was assumed in
®tting the equation of state.

GULP VASP Experiment

Unit-cell parameters and volume
a0 (AÊ ) 7.151 7.555 7.4883
b0 (AÊ ) 7.540 7.756 7.6808
c0 (AÊ ) 5.918 5.795 5.7774
V0 (AÊ 3) 319.11 339.57 332.29
Atomic coordinates (space group Pbnm)
Al1 (0, 0, 0) (0, 0, 0) (0, 0, 0)
Al2 (0.1374, 0.3420, 1/4) (0.1429, 0.3464, 1/4) (0.1417, 0.3449, 1/4)
Si (0.1512, 0.3359, 3/4) (0.1530, 0.3413, 3/4) (0.1533, 0.3402, 3/4)
Oa (0.3702, 0.4022, 3/4) (0.3594, 0.4110, 3/4) (0.3605, 0.4094, 3/4)
Ob (0.3572, 0.4360, 1/4) (0.3571, 0.4342, 1/4) (0.3569, 0.4341, 1/4)
Oc (0.4744, 0.0036, 3/4) (0.4776, 0.0020, 3/4) (0.4763, 0.0015, 3/4)
Od (0.1232, 0.2230, 0.5120) (0.1253, 0.2239, 0.5135) (0.1252, 0.2230, 0.5145)
Physical properties
Eatom (eV) ± ÿ50.795 ÿ51.19
K0 (GPa) 161.4 (155.9 with K0 = 4) 160.1 (148.0 with K0 = 4) 171
K0 2.99 2.69 [4]

Table 2
Comparison of theoretical calculations with experimental data for andalusite.

The experimental crystal structure was taken from Winter & Ghose (1979), the equation of
state was taken from Ralph et al. (1984) and included a later correction by Yang et al. (1997),
and the atomization energy was recalculated from the enthalpy of formation data of Olbricht
et al. (1994).

GULP VASP Experiment

Unit-cell parameters and volume
a0 (AÊ ) 7.679 7.860 7.7980
b0 (AÊ ) 7.727 7.956 7.9031
c0 (AÊ ) 5.666 5.592 5.5566
V0 (AÊ 3) 336.21 349.68 342.45
Atomic coordinates (space group Pnnm)
Al1 (0, 0, 0.2472) (0, 0, 0.2419) (0, 0, 0.2419)
Al2 (0.3605, 0.1395, 1/2) (0.3709, 0.1389, 1/2) (0.3705, 0.1391, 1/2)
Si (0.2304, 0.2550, 0) (0.2458, 0.2522, 0) (0.2460, 0.2520, 0)
Oa (0.4555, 0.3511, 1/2) (0.4243, 0.3627, 1/2) (0.4233, 0.3629, 1/2)
Ob (0.4120, 0.3714, 0) (0.4238, 0.3640, 0) (0.4246, 0.3629, 0)
Oc (0.0941, 0.4106, 0) (0.1025, 0.4006, 0) (0.1030, 0.4003, 0)
Od (0.2262, 0.1451, 0.2305) (0.2311, 0.1341, 0.2401) (0.2305, 0.1339, 0.2394)
Physical properties
Eatom (eV) ± ÿ50.844 ÿ51.23
K0 (GPa) 208.9 (196.2 with K0 = 4) 145.3 (143.5 with K0 = 4) 135; 151
K0 1.83 3.88 [4]; [4]
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Valence-orbital one-electron wavefunctions were expanded

in a plane-wave basis set with a plane-wave kinetic energy

cutoff of 800 eV (1 eV = 96.485 kJ molÿ1), which was found to

give the total energy converged to within 6� 10ÿ4 eV atomÿ1.

The effects of the core electrons were modelled by effective

core pseudopotentials (ECPs). All adopted pseudopotentials

were non-local: norm-conserving (Rappe et al., 1990) with

partial core corrections (Louie et al., 1982) for Al (valence

con®guration 3s23p13d0) and Si (valence con®guration

3s23p23d0), and ultrasoft ECP (Vanderbilt, 1990) for O

(valence con®guration 2s22p43d0). Core-region cutoffs were

0.96 AÊ for Al, 0.95 AÊ for Si and 0.82 AÊ for O. It is important to

note that all these ECPs were generated using the same

density functional (Wang & Perdew, 1991) as used in our solid-

state calculations; all these ECPs were taken from the VASP

pseudopotential library. For the purpose of studying phase

transitions, symmetry constraints were not imposed in any of

the calculations presented here. For the Brillouin-zone inte-

gration, we used the scheme of Monkhorst & Pack (1976) with

2� 2� 2 grids. Increasing the k-point mesh density from 2� 2

� 2 to 4 � 4 � 4 did not lead to changes in the total energy

exceeding 1.5 � 10ÿ3 eV atomÿ1. Constant-pressure enthalpy

minimization was carried out iteratively until self-consistency

to within 10ÿ3 eV for ionic relaxation and 10ÿ4 eV for elec-

tronic relaxation was achieved. Stresses on the unit cell and

forces on the atoms, used for structure relaxation, were

calculated from the self-consistent charge density using the

Hellmann±Feynman theorem.

2.2. Semiclassical calculations

These calculations were performed with the GULP package

(General Utility Lattice Program; Gale, 1997). Lattice

dynamics is a key point in the theory of phase transitions.

Unfortunately, non-empirical calculations are currently

computationally too demanding to be used routinely for

lattice dynamics, especially in the case of low-symmetry ionic

crystals with large unit cells.

Here we use the simple ionic shell model, which proved to

be suf®ciently good to describe the lattice dynamics of silicate

minerals (Burnham, 1990), including the Al2SiO5 polymorphs

(Winkler & Buehrer, 1990; Rao et al., 1999). The total lattice

energy is given by

Est �
P

i

ks��r�2 �P
i6�j

�zizj=Rij � bij exp�ÿRij=�ij� ÿ cij=R6
ij�

� P
i6�j 6�k

kijk�� ÿ �0�2; �1�

where �r denotes the distance between the core and shell of a

polarizable ion, Rij denotes an interatomic distance and � is a

valence angle. The ®rst sum in (1) counts the self-energy of

polarizable ions arising from their deformation, the second

sum includes pair interactions (Coulombic energy plus short-

range 6-exp Buckingham potential), while the third sum

consists of three-body angle-bending terms. Coulombic energy

was calculated by the Ewald summation; Buckingham poten-

tials were summed over all interatomic pairs with distances

below 10 AÊ ; three-body potentials were calculated only

between strong bonds (shorter than 1.8 AÊ for SiÐO and 1.9 AÊ

for AlÐO bonds). Three-body terms are important for

tetrahedrally coordinated silicates. For consistency, we use the

same `tetrahedral' three-body terms even for non-tetrahedral

high-pressure structures, even though this can lead to some

ambiguity. We use the same parameters as used by Urusov et

al. (1998), which were taken from previous studies (Catlow,

1977; Sanders et al., 1984; Lewis & Catlow, 1985) with a

correction for the different coordination numbers of Al (see

Lewis & Catlow, 1985; Urusov et al., 1998).

Crystal structures were determined by minimizing the

lattice enthalpy in the constant-pressure regime. Elastic

constants were computed as the second derivatives of the

lattice energy density with respect to lattice strains, and

Figure 2
Crystal structures of (a) sillimanite and (b) meta-sillimanite phases. Si
polyhedra are blue, Al2 polyhedra are yellow, Al1ÐO bonds are shown
as purple sticks, and O atoms are red spheres. The unit-cell outline and
orientation (in Pbnm setting) are also shown.



normal mode frequencies were derived from the eigenvalue

equation (see Dove, 1993):

detjDij
���q� ÿ !2����ijj � 0; �2�

where D is the dynamical matrix and !2 are its eigenvalues.

Negative !2 (i.e. imaginary !) signify dynamical instability of

the structure with respect to a particular atomic motion, given

by the mode eigenvectors, and indicate a soft-mode-driven

phase transition. The soft-mode wavevector q determines the

direction and periodicity of the modulation imposed on the

parent lattice at the phase transition.

An important particular case of dynamical instability is

mechanical instability, in which long-wavelength acoustic

modes soften. The necessary and suf®cient condition of

mechanical stability of a crystal is positive de®niteness of

the elastic-constant tensor Cij (Fedorov, 1968; Sirotin &

Shaskolskaya, 1975). Positive de®niteness is equivalent to

positiveness of the determinant of the Cij matrix and all its

principal minors; in particular, all diagonal elements Cii are

principal minors and, therefore, must be positive for a

mechanically stable crystal. Mechanical stability conditions for

crystals of all symmetry classes have been analysed previously

(Cowley, 1976; Terhune et al., 1985). Violation of any of these

conditions leads to softening of an acoustic mode in the

vicinity of the ÿ point, inducing a ferroelastic phase transition.

Mechanical stability criteria for crystals under stress (Wang et

al., 1993, 1995) employ the Cij derived from the stress±strain

relations.3

2.3. Accuracy of simulations

Tables 1 and 2 present a comparison of the calculated and

experimentally determined crystal structures and properties of

andalusite and sillimanite at ambient pressure.4 Equations of

state were ®tted to the third-order Birch±Murnaghan equation

of state:

P�V� � 3=2K0��V0=V�7=3 ÿ �V0=V�5=3�f1� ���V0=V�2=3 ÿ 1�g;
�3�

where V0 and K0 are the zero-pressure volume and bulk

modulus, respectively, and � � 3=4�K 00 ÿ 4�, in which K 00 is the

pressure derivative of the bulk modulus at P = 0. In terms of

the internal energy as a function of volume, E(V), this equa-

tion of state can be equivalently written as

E�V� �E�V0� � 3=2K0V0�3=2�� ÿ 1��V0=V�2=3

� 3=4�1ÿ 2���V0=V�4=3 � 1=2��V0=V�6=3

ÿ �2� ÿ 3�=4�: �4�
As can be seen from Tables 1 and 2, both types of simula-

tions reproduce experimental data fairly well. In the sense of
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Table 3
Crystal structure and equation of state of the meta-sillimanite phase.

GULP (30 GPa) VASP (50 GPa)

Unit-cell parameters and volume
a0 (AÊ ) 5.891 6.178
b0 (AÊ ) 7.443 7.135
c0 (AÊ ) 6.044 5.773
V (AÊ 3) 265.00 254.49
Atomic coordinates (space group Pbnm)
Al1 (0, 0, 0) (0, 0, 0)
Al2 (0.1189, 0.3126, 1/4) (0.1151, 0.3047, 1/4)
Si (0.1215, 0.3064, 3/4) (0.1249, 0.2915, 3/4)
Oa (0.3939, 0.3755, 3/4) (0.3829, 0.3721, 3/4)
Ob (0.4002, 0.3793, 1/4) (0.3892, 0.3747, 1/4)
Oc (0.5089, ÿ0.0139, 3/4) (0.4987, ÿ0.0167, 3/4)
Od (0.1605, 0.2079, 0.5071) (0.1843, 0.1853, 0.5060)
E(V) equation of state (VASP data)
Eatom (eV) ÿ49.861
V0 (AÊ 3) 325.68
K0 (GPa) 112.50
K0 4.73

Table 4
Geometry (AÊ , �) of the SiO5 polyhedra.

Results for meta-quartz are according to Badro et al. (1997), obtained in the
local-density approximation at 16 GPa. The meta-quartz phase is a metastable
phase that is isosymmetric with quartz and succeeds it at high non-hydrostatic
pressures. The polyhedron described by Badro et al. (1997) is very similar to
our results. In our polyhedron, the O4 and O5 vertices are symmetrically
equivalent, but in the polyhedron of Badro et al. (1997) they are different. Two
entries relate to the two symmetrically distinct parameters of the polyhedron
of Badro et al. (1997).

Meta-sillimanite
(GULP, 30 GPa)

Meta-sillimanite
(VASP, 50 GPa)

Meta-quartz
(SiO2)

SiÐO1 1.685 1.695 1.728
SiÐO2 1.901 1.878 1.869
SiÐO3 1.543 1.567 1.617
SiÐO4,5 1.657 (�2) 1.641 (�2) 1.674; 1.626
O1ÐSiÐO2 151.1 160.7 168.2
O1ÐSiÐO3 102.1 99.3 93.7
O1ÐSiÐO4,5 90.2 86.9 95.9
O2ÐSiÐO3 106.8 100.0 87.6
O2ÐSiÐO4,5 76.9 83.2 76.3; 94.6
O3ÐSiÐO4,5 116.9 120.8 142.4; 106.1
O4ÐSiÐO5 124.7 118.3 108.9

Figure 3
Geometry of the SiO5 polyhedra in the meta-sillimanite structure (VASP
results at 50 GPa). Crystallographic types of oxygen atoms and their
distances to the Si atom are indicated. The inset shows the unit-cell
orientation. This geometry can be described either as a trigonal
bipyramid (with apical O4 atoms) or as a square pyramid (apical O3
atom). The orientation with respect to the unit-cell (Pbnm) axes is
indicated.

3 There is a simple correction (Barron & Klein, 1965; Wallace, 1972) to
transform between the Cij derived from the energy-density derivatives and
those obtained from stress±strain relations.
4 Tables of structural parameters at all pressures are available from the
authors.
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quality of results, ab initio GGA calculations are superior. The

GGA calculations predict clearly better atomic fractional

coordinates. As in almost all known cases, GGA calculations

produce unit-cell parameters that are systematically over-

estimated by ca 1%, with a corresponding underestimation of

the bulk modulus by ca 10% (Oganov et al., 2001). Both

methods give a reasonably good equation of state for each

mineral. It is known that semi-classical calculations are unre-

liable in predicting phase-transformation enthalpies when

large structural changes are involved, e.g. for transitions

between kyantite, andalusite and sillimanite (Winkler et al.,

1991). Unlike the ionic model calculations, the ab initio

calculations based on the GGA successfully reproduce the

phase diagram (Fig. 1) of the Al2SiO5 system (Oganov &

Brodholt, 2000). GGA calculations are also very successful in

obtaining accurate atomization energies. However, both

methods give a very similar qualitative picture of the meta-

stable and largely structure-conserving pressure-induced

phase transitions in andalusite and sillimanite. Only the

transition pressures predicted by semiclassical calculations are

�2 times lower than the ab initio values. Although the GGA

usually results in a shifted pressure scale (Oganov et al., 2001)

and overestimates the transition pressures (for a discussion,

see Zupan et al., 1998; Oganov & Brodholt, 2000), the errors

are usually within a few GPa. In the following discussion, we

use only the GGA pressures.

3. Phase transitions in sillimanite

The change in structure occurring upon compression above

33.5 GPa can be seen in Fig. 2. The low- and high-pressure

phases have the same symmetry, Pnma, and similar structures;

the Al1 positions are octahedrally coordinated in both struc-

tures. The difference is that, in the high-pressure meta-silli-

manite phase, all Si atoms and half of the Al atoms (Al2

positions) display ®vefold coordination instead of the tetra-

hedral coordination they adopt in sillimanite. This is achieved

by pulling the O atoms, initially not bonded to Si and Al2,

inside the ®rst coordination spheres of Si and Al2. The

increase in coordination numbers is, as usual, correlated with

the increase in density upon the transition. Structural param-

eters of the meta-sillimanite phase are given in Table 3.

Five-coordinate Si was discovered in an inorganic

compound (K2Si4O9 glass) only recently (Stebbins &

McMillan, 1989), using NMR spectroscopy; the ®rst structural

characterization of ®ve-coordinate Si was obtained for

CaSi2O5 (Angel et al., 1996), almost simultaneously with a

theoretical prediction of a metastable SiO2 phase with ®ve-

Figure 4
Evolution of (a) SiÐO and (b) AlÐO distances in sillimanite. Vertical
lines show the hysteresis loop.

Figure 5
Pressure evolution of (a) the lattice parameters and (b) the unit-cell
volume of sillimanite. The hysteresis loop is very pronounced.



coordinate Si atoms (Badro et al., 1997). Using quantum-

mechanical simulations, Warren et al. (1999) considered the

pressure-induced transition between the phases of CaSi2O5

containing Si in octahedral and ®vefold coordination. Another

case of this exotic coordination of Si was found in a recent

experimental study (Alberti et al., 1999) of temperature-

induced dehydration of the zeolite mineral brewsterite

[(Sr,Ba)Al2Si6O16 �5H2O]. Molecular dynamics simulations

(Chaplot & Choudhury, 2000) of MgSiO3 enstatite have

indicated a phase containing ®ve-coordinate Si roughly at the

pressure±temperature conditions of the Earth's transition

zone. This phase is almost certainly metastable and appears as

an intermediate step in the pressure-induced transformation

from enstatite (Si in tetrahedral coordination) to MgSiO3

perovskite (Si in octahedral coordination). Our work reports a

further example of this unusual coordination. The interest in

®ve-coordinate Si is mainly prompted by its anticipated

importance for the transport properties in the Earth's mantle

(see Angel et al., 1996, and references therein), because the

®vefold coordination, intermediate between tetrahedral and

octahedral coordination, is likely to appear in ¯uids, especially

at pressures corresponding to the change of the coordination

number of Si in mantle minerals (8±30 GPa), and can serve as

a convenient transition state in mass transport.

In Table 4 and Fig. 3, we analyse the geometry of the SiO5

polyhedra determined by our calculations. Comparison with

the other two studies (Angel et al., 1996; Badro et al., 1997)

indicates similarities with the study of Badro et al. (1997), who

also found one SiÐO bond to be noticeably longer than the

others, and the overall geometry of the polyhedron to be

intermediate between a trigonal bipyramid and a square

pyramid, rather than a square pyramid as found by Angel et al.

(1996) in CaSi2O5. The difference is easy to explain by the

genesis of these polyhedra. In the low-pressure titanite-like

CaSi2O5 studied by Angel et al. (1996), the SiO5 polyhedra

were formed by removing one O atom from SiO6 octahedra

of the high-pressure phase, naturally producing a square

pyramid. In SiO2 (Badro et al., 1997) and Al2SiO5 (this work),

SiO5 polyhedra are formed by adding one O atom to SiO4

tetrahedra, which results in a trigonal bipyramid. The two

types of polyhedra, however, can be converted to each other

by small displacements of O atoms; this transformation is

known as the Berry pseudorotation.

In Fig. 4, one can see how AlÐO and SiÐO distances

evolve with pressure: when an initially non-bonding `®fth'

Al� � �O or Si� � �O contact reaches some threshold distance, a

bond is formed. The bond formation changes the topology of

the crystal structure and the force balance within it, making it

collapse into the higher-density phase. On decompression, the

exactly opposite situation occurs: when a bond becomes too

long, it ceases to be a bond and the non-bonded atom is

expelled from the coordination sphere. In other words, the

formation of the new bond or destruction of an old one is the

cause of the phase transition. The critical interatomic

distances, which we ®nd to be ca 2.25 (17) and 2.05 (4) AÊ for

SiÐO and AlÐO bonds, respectively, can be used as a

criterion of bonding in oxygen compounds of Al and Si, and

are potentially important in studies of the structure of glasses

and transition states in these systems. It is interesting that

purely ionic shell model calculations reproduce these critical

lengths remarkably well: 2.27 (15) AÊ for SiÐO and 2.01 (2) AÊ

for AlÐO bonds. Therefore, the nature of the critical bonding

distances in Al2SiO5 is not related to the changes in electronic

structure, which are not accounted for by the simple ionic shell

model. Bond valences, calculated using the parameters of
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Figure 6
Phonon dispersion curves of (a) sillimanite at room pressure, (b)
sillimanite near the transition to the isosymmetric phase, and (c) the
isosymmetric phase. Only several lowest-frequency phonon branches are
shown. Pbnm setting is used in the notation of reciprocal-space points.
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Brown & Altermatt (1985), are 0.18 and 0.34 valence units,

respectively (for the ionic model, 0.17 and 0.34, respectively).

The AlÐO critical bond length [2.05 (4) AÊ ] seems to be too

small; a better value (�2.4 AÊ ) would result if we take the

structure before the onset of the incommensurate modulation

(see below) occurring in sillimanite in the region of the

anomalous softening of the structure in the hysteresis region.

It is possible that this incommensurate modulation and soft-

ening re¯ect the steric strain associated with the formation of

the new AlÐO bonds.

The pressure-induced variation of the unit-cell parameters

and volume is shown in Fig. 5. Several features deserve special

note. This phase transition, with an equilibrium transition

pressure of 33.5 GPa, is reversible; in Fig. 5 we show results

obtained on decompression as well as on compression. The

transition is ®rst order with a marked volume discontinuity

and strong hysteresis (which is a necessary feature of all

reversible ®rst-order transitions). This agrees with the

conclusion of Bruce & Cowley (1981) and Christy (1995), who

have shown, on the basis of Landau theory, that isosymmetric

phase transitions must be of ®rst order, but can disappear (i.e.

become fully continuous) at temperatures above the critical

point. The lattice parameters and volume display normal

pressure dependence outside the hysteresis region. Inside that

region, we observe an anomalously large fall of the volume

and parameter a with increasing pressure, and non-monotonic

variation of the parameter c, which increases with pressure

near the transition. Parameter b is affected only slightly by

the phase transformation. The negative linear compressibility

along the c axis, which we have found in sillimanite and its

high-pressure isosymmetric successor in the transition region,

is a very interesting phenomenon. Bulk compressibility cannot

be negative, as this is forbidden by mechanical stability

criteria. Linear compressibility, however, can be negative in

some directions for non-cubic crystals. In our case, it was

associated with an incipient phase transition and formation/

breaking of new bonds in the structure.5 This isosymmetric

transition is ferroelastic because it is associated (as shown by

GULP calculations) with a complete softening of the C11

elastic constant. This correlates with the collapse of the a axis,

associated with the formation of new SiÐO and AlÐO bonds

directed largely along the a direction.

Variation of the lattice parameters in the vicinity of the

transition suggests that structures of both phases `prepare' for

the transition, i.e. their lattice parameters tend to merge

towards the transition. It is well known (Sirotin & Shaskol-

skaya, 1975) that, for structural transitions with symmetry

breaking, the structure of the low-symmetry phase becomes

increasingly more similar to the high-symmetry structure,

whereas the latter shows no indication of approaching the low-

symmetry structure. As our example suggests, in cases where

the symmetries of the phases are identical, both structures

show a tendency to approach each other in the vicinity of the

transition.

Using semi-classical simulations, we considered dynamical

stability criteria (Fig. 6). At ambient pressure, sillimanite is

dynamically stable, in agreement with experiment. The high-

pressure isosymmetric phase is also dynamically stable.

However, at ca 1 GPa below the high-pressure transition,

sillimanite acquires a minor dynamical instability, which would

lead to an incommensurate modulation with q* ' (0.47, 0, 0)

(Fig. 6b). The imaginary frequencies are very small, suggesting

that the modulation may be anharmonically suppressed, even

at not very high temperatures, and the isosymmetric phase

transition would occur, bypassing the incommensurate phase.
Figure 7
Crystal structures of (a) andalusite and (b) the high-pressure isosym-
metric dynamically unstable phase. Instead of the latter phase, an
amorphous solid is predicted to occur at high pressures. Si polyhedra are
blue, Al2 polyhedra are yellow, Al1ÐO bonds are shown as purple sticks,
and O atoms are red spheres. The unit-cell outline and orientation are
also shown.

5 In Pb3(PO4)2, negative linear compressibility was found along the c direction
of the monoclinic cell (Angel, 2000); it was tentatively ascribed to the
stereochemical activity of the lone electron pair of Pb2+ (Angel, private
communication).



Several `spot-checks' were performed using both VASP and

GULP in order to make sure that the input structure did not

bias the results. These spot-checks started with a slightly

deformed unit cell (by 0.01±0.02 AÊ and 1±2�) and with

displaced atoms (by 0.01±0.02 AÊ ), picked at random, followed

by static constant-pressure relaxation of the structure. For the

high-pressure sillimanite modi®cation, the original structure

was always recovered in VASP calculations, even at pressures

as high as 70 GPa. At the same time, at �10 GPa after the

formation of the isosymmetric phase, GULP calculations show

soft modes and dif®culties in optimizing the structure and

removing the introduced strains; however, this results from the

inadequacy of the three-body potentials, which becomes

critical at these high pressures as all ®ve SiÐO (and AlÐO)

bonds become strong (i.e. shorter than 1.8 and 1.9 AÊ for SiÐO

and AlÐO bonds, respectively).

4. Phase transitions in andalusite

Andalusite appears to be metastable in a much broader

pressure range, up to 52 GPa. The crystal structures of anda-

lusite and the meta-andalusite phase succeeding it are

depicted in Fig. 7. The equations of state and pressure

evolution of the lattice parameters are represented in Fig. 8,

which shows an extremely large hysteresis region, in the range

17±52 GPa. The meta-andalusite phase, however, is dynami-

cally unstable at all pressures. The character of the dynamical

instability (Fig. 9), involving softening of almost a whole

transverse acoustic branch along some directions, suggests

amorphization of this structure (Binggeli et al., 1994; Keskar et

al., 1994), the appearance of which is therefore nothing more

than an artifact of periodic boundary conditions. In this

unstable phase, all Al atoms are octahedrally coordinated,

while in andalusite the Al2 positions are ®ve-coordinate, and

the Si atoms have tetrahedral coordination. In order to make

sure that amorphization does occur, we performed several

static spot-checks using the method described in the previous

section. The fact that the structure of the high-pressure

successor of andalusite was not recovered is clear evidence of

its instability. The resulting structure drastically differs from

the original structure in the unit-cell volume and shape. GULP

calculations still ®nd some soft modes for this structure,
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Figure 9
Phonon dispersion curves of (a) andalusite at room pressure and (b) the
high-pressure post-andalusite phase, showing its dynamical instability.
Only several lowest-frequency phonon branches are shown. Amorphiza-
tion should occur along the c and, possibly, a axes.

Figure 8
Pressure evolution of (a) the lattice parameters and (b) the unit-cell
volume of andalusite. Dashed lines show the hysteresis loop.
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suggesting that larger supercells are necessary to describe the

relaxation of this amorphous structure correctly.

The pressure evolution of the lattice parameters (Fig. 8) and

interatomic distances indicates no `preparation' for the tran-

sition of the kind we encountered in sillimanite. Instead, the

transition is abrupt, apparently being caused by cooperative

rather than local effects driving the crystal to dynamical

instability. Although the crystal structures of andalusite and

sillimanite are quite similar, the drastic difference between

their high-pressure behaviour arises from the difference in the

degree of ¯exibility of the structural units, which are rather

supple in sillimanite and rigid in andalusite. Consequently,

andalusite can stay metastable up to much higher pressures

than sillimanite and the transformation is not associated with

the critical bond mechanism discussed in the previous section.

5. Discussion and conclusions

Using ab initio simulations, we have predicted here a number

of metastable modi®cations of Al2SiO5. Sillimanite undergoes

an isosymmetric phase transition at 33.5±38 GPa, preceded by

an incommensurate transition at low temperatures. Andalusite

transforms directly into an amorphous phase at 34±51 GPa.

We have analysed the geometry of the SiO5 polyhedra found

in the high-pressure meta-sillimanite phase. These polyhedra

can be described as intermediate between trigonal bipyramids

and square pyramids, just as those studied by Badro et al.

(1997) in a metastable isosymmetric phase formed from quartz

(SiO2). A trigonal bipyramid is likely to be formed by the

addition of an O atom to an SiO4 tetrahedron on increasing

pressure, while, for a square pyramid, the case of removal of

one O atom from an SiO6 octahedron on decreasing pressure

is more relevant (Fig. 10). Apart from direct results on the

given system, this study provides several general conclusions.

First, we have proposed the existence of a critical bonding

distance RCR, and transferability of the RCR values between

different crystals. This concept naturally explains the meta-

stable phase transitions in sillimanite and should be able to

explain a number of other displacive phase transitions. With

the RCR value known, it becomes easy to determine unam-

biguously the coordination numbers of atoms, which is often

dif®cult, e.g. for ionic crystals with large cations. Therefore, the

RCR criterion, if robust enough, should bring more order into

the structural chemistry of such compounds. The fact that the

RCR values determined by quantum-mechanical calculations

and simple interatomic potentials are identical implies that

RCR is not sensitive to the details of electronic structure and its

changes.

Second, we can generally expect that, for crystals with

complicated low-symmetry structures and many degrees of

freedom, metastable pressure-induced phase transitions

should be very common. In such systems, the relaxation of

internal degrees of freedom under pressure would easily lead

to situations where initially non-bonded atoms approach each

other closely enough (R < RCR) to form a new bond, which

automatically triggers a phase transition. Systems potentially

of this kind, namely titanite-like CaSi2O5, quartz and coesite

(SiO2), feldspars, zeolites and berlinite (AlPO4), all undergo

such transitions. As structures tend to accommodate the

minimum changes necessary to maintain stability, symmetry

will be preserved whenever possible. We call such transitions

`local' (the old and new phases are structurally related and the

new phase may be metastable) as opposed to `global' (where

there are no structural relations between the old and new

phases and the new phase is always thermodynamically stable,

i.e. it is in the global free-energy minimum). The idea of local

and global transitions is very powerful, taking its strength from

a simple link it establishes between structure, thermodynamics

and kinetics. For example, the Ostwald rule takes a simple

form: `global phase transformations tend to occur via a

Figure 10
Genesis of the ®vefold coordination of silicon. Tetrahedral Si (A) can
capture a neighbouring O atom (B), becoming ®vefold coordinated (C).
The coordination polyhedron is intermediate between a trigonal
bipyramid and a square pyramid (cf. Fig. 3), into which it can easily
transform by Berry pseudorotation (C!D). Capturing another O atom,
a square bipyramid becomes an octahedron (D ! E). The reverse
transformation path is equally possible. In this study, we see stages A±C;
Angel et al. (1996) and Warren et al. (1999) observed stages D±E in
CaSi2O5.



sequence of local transitions'. From this viewpoint, it is easy to

conclude that the phases that are most likely to appear as

metastable in synthesis must either have a stability domain on

the pressure±temperature phase diagram or be related to one

of such phases by a local phase transition. This implies

structural and symmetry relations between the possible

metastable phases and the stable phases for a system. These

and related ideas will be explored in a following paper.
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